Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Front Immunol ; 14: 1107156, 2023.
Article in English | MEDLINE | ID: covidwho-2283992

ABSTRACT

Objectives: To comprehensively analyze the quality of the antibody response between children with Multisystem inflammatory syndrome (MIS-C) and age-matched controls at one month after SARS-CoV-2 exposure, and infected in the same time-period. Methods: Serum from 20 MIS-C children at admission, and 14 control children were analyzed. Antigen specific antibody isotypes and subclasses directed against various antigens of SARS-CoV-2 as well as against human common coronavirus (HCoVs) and commensal or pathogenic microorganisms were assessed by a bead-based multiplexed serological assay and by ELISA. The functionality of these antibodies was also assessed using a plaque reduction neutralization test, a RBD-specific avidity assay, a complement deposition assay and an antibody-dependent neutrophil phagocytosis (ADNP) assay. Results: Children with MIS-C developed a stronger IgA antibody response in comparison to children with uncomplicated COVID-19, while IgG and IgM responses are largely similar in both groups. We found a typical class-switched antibody profile with high level of IgG and IgA titers and a measurable low IgM due to relatively recent SARS-CoV-2 infection (one month). SARS-CoV-2-specific IgG antibodies of MIS-C children had higher functional properties (higher neutralization activity, avidity and complement binding) as compared to children with uncomplicated COVID-19. There was no difference in the response to common endemic coronaviruses between both groups. However, MIS-C children had a moderate increase against mucosal commensal and pathogenic strains, reflecting a potential association between a disruption of the mucosal barrier with the disease. Conclusion: Even if it is still unclear why some children develop a MIS-C, we show here that MIS-C children produce higher titers of IgA antibodies, and IgG antibodies with higher functionality, which could reflect the local gastro-intestinal mucosal inflammation potentially induced by a sustained SARS-CoV-2 gut infection leading to continuous release of SARS-CoV-2 antigens.


Subject(s)
Blood Group Antigens , COVID-19 , Connective Tissue Diseases , Humans , Child , SARS-CoV-2 , Antibody Formation , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
3.
PLoS One ; 18(3): e0283149, 2023.
Article in English | MEDLINE | ID: covidwho-2272096

ABSTRACT

OBJECTIVES: We evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity. METHODS: We conducted a serological study among 192 individuals with documented prior SARS-CoV-2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. In addition, 109 participants from the positive cohort and 44 participants from the negative cohort participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA. RESULTS: Using serum samples, we achieve a clinical sensitivity of 98·33% and specificity of 97·62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95·05% using Mitra, 61·11% using glucose test strips, 83·16% using HemaXis, and 91·49% for HemaXis after automated extraction, without any drop in specificity. DISCUSSION: High sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home-based sampling or samples collected in the field.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , COVID-19/diagnosis , Immunoglobulin G , Microfluidics , SARS-CoV-2 , Sensitivity and Specificity
4.
Swiss Med Wkly ; 153(4): 40049, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2251559

ABSTRACT

OBJECTIVE: We aimed to examine factors associated with parental willingness to vaccinate their children against COVID-19. METHODS: We surveyed adults included in a digital longitudinal cohort study composed of participants in previous SARS-CoV-2 serosurveys conducted in Geneva, Switzerland. In February 2022, an online questionnaire collected information on COVID-19 vaccination acceptance, parental willingness to vaccinate their children aged ≥5 years and reasons for vaccination preference. We used multivariable logistic regression to assess the demographic, socioeconomic and health-related factors associated with being vaccinated and with parental intention to vaccinate their children. RESULTS: We included 1,383 participants (56.8% women; 69.3% aged 35-49 years). Parental willingness to vaccinate their children increased markedly with the child's age: 84.0%, 60.9% and 21.2%, respectively, for parents of adolescents aged 16-17 years, 12-15 years and 5-12 years. For all child age groups, unvaccinated parents more frequently indicated not intending to vaccinate their children than vaccinated parents. Refusal to vaccine children was associated with having a secondary education (1.73; 1.18-2.47) relative to a tertiary education and with middle (1.75; 1.18-2.60) and low (1.96; 1.20-3.22) household income relative to high income. Refusal to vaccine their children was also associated with only having children aged 12-15 years (3.08; 1.61-5.91), aged 5-11 years (19.77; 10.27-38.05), or in multiple age groups (6.05; 3.22-11.37), relative to only having children aged 16-17 years. CONCLUSION: Willingness to vaccinate children was high for parents of adolescents aged 16-17 years but decreased significantly with decreasing child age. Unvaccinated, socioeconomically disadvantaged parents and those with younger children were less likely to be willing to vaccinate their children. These results are important for vaccination programs and developing communication strategies to reach vaccine-hesitant groups, both in the context of COVID-19 and in the prevention of other diseases and future pandemics.


Subject(s)
COVID-19 , Adolescent , Adult , Humans , Child , Female , Aged, 80 and over , Male , COVID-19/prevention & control , Switzerland , SARS-CoV-2 , COVID-19 Vaccines , Cross-Sectional Studies , Longitudinal Studies , Parents , Vaccination
5.
BMJ Open ; 12(11): e063504, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2137752

ABSTRACT

OBJECTIVES: To estimate the prevalence of children and adolescents reporting persistent symptoms after SARS-CoV-2 infection. DESIGN: A random sample of children and adolescents participated with their family members to a serological survey including a blood drawing for detecting antibodies targeting the SARS-CoV-2 nucleocapsid (N) protein and a questionnaire on COVID-19-related symptoms experienced since the beginning of the pandemic. SETTING: The study took place in the canton of Geneva, Switzerland, between June and July 2021. PARTICIPANT: 660 children aged between 2 and 17 years old. PRIMARY AND SECONDARY OUTCOME: The primary outcome was the persistence of symptoms beyond 4 weeks comparing seropositive and seronegative participants. The type of declared symptoms were also studied as well as associated risk factors. RESULTS: Among seropositive children, the sex-adjusted and age-adjusted prevalence of symptoms lasting longer than 2 weeks was 18.3%, compared with 11.1% among seronegatives (adjusted prevalence difference (ΔaPrev)=7.2%, 95% CI: 1.5% to 13.0%). Among adolescents aged 12-17 years, we estimated the prevalence of experiencing symptoms lasting over 4 weeks to be 4.4% (ΔaPrev,95% CI: -3.8% to 13.6%), whereas no seropositive child aged 2-11 reported symptoms of this duration. The most frequently declared symptoms were fatigue, headache and loss of smell. CONCLUSIONS: We estimated the prevalence of experiencing persistent symptoms lasting over 4 weeks to be around 4% among adolescents, which represents a large absolute number, and should raise awareness and concern. We did not observe meaningful differences of persistent symptoms between seropositive and seronegative younger children, suggesting that they may be less affected than their older counterparts.


Subject(s)
COVID-19 , Adolescent , Child , Humans , Child, Preschool , COVID-19/epidemiology , Cross-Sectional Studies , SARS-CoV-2 , Pandemics , Research Design
6.
Nat Commun ; 13(1): 7086, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2133428

ABSTRACT

Post-COVID syndrome remains poorly studied in children and adolescents. Here, we aimed to investigate the prevalence and risk factors of pediatric post-COVID in a population-based sample, stratifying by serological status. Children from the SEROCoV-KIDS cohort study (State of Geneva, Switzerland), aged 6 months to 17 years, were tested for anti-SARS-CoV-2 N antibodies (December 2021-February 2022) and parents filled in a questionnaire on persistent symptoms in their children (lasting over 12 weeks) compatible with post-COVID. Of 1034 children tested, 570 (55.1%) were seropositive. The sex- and age-adjusted prevalence of persistent symptoms among seropositive children was 9.1% (95%CI: 6.7;11.8) and 5.0% (95%CI: 3.0;7.1) among seronegatives, with an adjusted prevalence difference (ΔaPrev) of 4.1% (95%CI: 1.1;7.3). Stratifying per age group, only adolescents displayed a substantial risk of having post-COVID symptoms (ΔaPrev = 8.3%, 95%CI: 3.5;13.5). Identified risk factors for post-COVID syndrome were older age, having a lower socioeconomic status and suffering from chronic health conditions, especially asthma. Our findings show that a significant proportion of seropositive children, particularly adolescents, experienced persistent COVID symptoms. While there is a need for further investigations, growing evidence of pediatric post-COVID urges early screening and primary care management.


Subject(s)
COVID-19 , Humans , Adolescent , Child , Prevalence , Cohort Studies , COVID-19/epidemiology , Syndrome , Risk Factors , Antibodies, Viral
7.
PLoS One ; 17(8): e0272663, 2022.
Article in English | MEDLINE | ID: covidwho-1993491

ABSTRACT

OBJECTIVES: To report a prospective epidemiological, virological and serological investigation of a SARS-CoV-2 outbreak in a primary school. METHODS: As part of a longitudinal, prospective, school-based surveillance study, this investigation involved repeated testing of 73 pupils, 9 teachers, 13 non-teaching staff and 26 household members of participants who tested positive, with rapid antigen tests and/or RT-PCR (Day 0-2 and Day 5-7), serologies on dried capillary blood samples (Day 0-2 and Day 30), contact tracing interviews and SARS-CoV-2 whole genome sequencing. RESULTS: We identified 20 children (aged 4 to 6 years from 4 school classes), 2 teachers and a total of 4 household members who were infected by the Alpha variant during this outbreak. Infection attack rates were between 11.8 and 62.0% among pupils from the 4 school classes, 22.2% among teachers and 0% among non-teaching staff. Secondary attack rate among household members was 15.4%. Symptoms were reported by 63% of infected children, 100% of teachers and 50% of household members. All analysed sequences but one showed 100% identity. Serological tests detected 8 seroconversions unidentified by SARS-CoV-2 virological tests. CONCLUSIONS: This study confirmed child-to-child and child-to-adult SARS-CoV-2 transmission and introduction into households. Effective measures to limit transmission in schools have the potential to reduce the overall community circulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Child , Disease Outbreaks , Humans , Longitudinal Studies , Prospective Studies , SARS-CoV-2/genetics , Schools
8.
Nat Commun ; 13(1): 3840, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1991578

ABSTRACT

Emerging SARS-CoV-2 variants raise questions about escape from previous immunity. As the population immunity to SARS-CoV-2 has become more complex due to prior infections with different variants, vaccinations or the combination of both, understanding the antigenic relationship between variants is needed. Here, we have assessed neutralizing capacity of 120 blood specimens from convalescent individuals infected with ancestral SARS-CoV-2, Alpha, Beta, Gamma or Delta, double vaccinated individuals and patients after breakthrough infections with Delta or Omicron-BA.1. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta and Omicron-BA.1) determined by plaque-reduction neutralization assay allowed us to map the antigenic relationship of SARS-CoV-2 variants. Highest neutralization titers were observed against the homologous variant. Antigenic cartography identified Zeta and Omicron-BA.1 as separate antigenic clusters. Substantial immune escape in vaccinated individuals was detected for Omicron-BA.1 but not Zeta. Combined infection/vaccination derived immunity results in less Omicron-BA.1 immune escape. Last, breakthrough infections with Omicron-BA.1 lead to broadly neutralizing sera.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , COVID-19/prevention & control , Humans , Vaccination
10.
Eur J Clin Invest ; 52(10): e13818, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1861301

ABSTRACT

BACKGROUND: SARS-CoV-2 infection triggers different auto-antibodies, including anti-apolipoprotein A-1 IgGs (AAA1), which could be of concern as mediators of persistent symptoms. We determined the kinetics of AAA1 response over after COVID-19 and the impact of AAA1 on the inflammatory response and symptoms persistence. METHODS: All serologies were assessed at one, three, six and twelve months in 193 hospital employees with COVID-19. ROC curve analyses and logistic regression models (LRM) were used to determine the prognostic accuracy of AAA1 and their association with patient-reported COVID-19 symptoms persistence at 12 months. Interferon (IFN)-α and-γ production by AAA1-stimulated human monocyte-derived macrophages (HMDM) was assessed in vitro. RESULTS: AAA1 seropositivity was 93% at one month and declined to 15% at 12 months after COVID-19. Persistent symptoms at 12 months were observed in 45.1% of participants, with a predominance of neurological (28.5%), followed by general (15%) and respiratory symptoms (9.3%). Over time, strength of correlations between AAA1 and anti-SARS-COV2 serologies decreased, but remained significant. From the 3rd month on, AAA1 levels predicted persistent respiratory symptoms (area under the curves 0.72-0.74; p < 0.001), independently of disease severity, age and gender (adjusted odds ratios 4.81-4.94; p = 0.02), while anti-SARS-CoV-2 serologies did not. AAA1 increased IFN-α production by HMDMs (p = 0.03), without affecting the IFN-γ response. CONCLUSION: COVID-19 induces a marked though transient AAA1 response, independently predicting one-year persistence of respiratory symptoms. By increasing IFN-α response, AAA1 may contribute to persistent symptoms. If and how AAA1 levels assessment could be of use for COVID-19 risk stratification remains to be determined.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents , Apolipoprotein A-I , Autoantibodies , Humans , SARS-CoV-2
11.
J Mol Med (Berl) ; 100(5): 735-746, 2022 05.
Article in English | MEDLINE | ID: covidwho-1763332

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) represents a rare but severe complication of severe acute respiratory syndrome coronavirus 2 infection affecting children that can lead to myocardial injury and shock. Vascular endothelial dysfunction has been suggested to be a common complicating factor in patients with coronavirus disease 2019 (COVID-19). This study aims to characterize endothelial glycocalyx degradation in children admitted with MIS-C. We collected blood and urine samples and measured proinflammatory cytokines, myocardial injury markers, and endothelial glycocalyx markers in 17 children admitted with MIS-C, ten of which presented with inflammatory shock requiring intensive care admission and hemodynamic support with vasopressors. All MIS-C patients presented signs of glycocalyx deterioration with elevated levels of syndecan-1 in blood and both heparan sulfate and chondroitin sulfate in the urine. The degree of glycocalyx shedding correlated with tumor necrosis factor-α concentration. Five healthy age-matched children served as controls. Patients with MIS-C presented severe alteration of the endothelial glycocalyx that was associated with disease severity. Future studies should clarify if glycocalyx biomarkers could effectively be predictive indicators for the development of complications in adult patients with severe COVID-19 and children with MIS-C. KEY MESSAGES : Children admitted with MIS-C presented signs of endothelial glycocalyx injury with elevated syndecan-1 and heparan sulfate level. Syndecan-1 levels were associated with MIS-C severity and correlated TNF-α concentration. Syndecan-1 and heparan sulfate may represent potential biomarkers for patients with severe COVID-19 or MIS-C.


Subject(s)
COVID-19 , Glycocalyx , Adult , Biomarkers , COVID-19/complications , Child , Glycocalyx/metabolism , Heparitin Sulfate/metabolism , Humans , Syndecan-1/metabolism , Systemic Inflammatory Response Syndrome , Tumor Necrosis Factor-alpha/metabolism
12.
Pediatr Transplant ; 26(5): e14235, 2022 08.
Article in English | MEDLINE | ID: covidwho-1642766

ABSTRACT

BACKGROUND: COVID-19 vaccination has been successful in decreasing rates of SARS-CoV-2 infection in areas with high vaccine uptake. Cases of breakthrough SARS-CoV-2 infection remain infrequent among immunocompetent vaccine recipients who are protected from severe COVID-19. Robust data demonstrate the safety, immunogenicity, and effectiveness of several COVID-19 vaccine formulations. Importantly, Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine studies have now included children as young as 5 years of age with safety, immunogenicity, and effectiveness data publicly available. In the United States, emergency use authorization by the Federal Drug Administration and approval from the Centers for Disease Control/Advisory Committee on Immunization Practices have been provided for the 5- to 11-year-old age group. METHODS: Members of the International Pediatric Transplant Association (IPTA) provide an updated review of current COVID-19 vaccine data with focus on pediatric solid organ transplant (SOT)-specific issues. RESULTS: This review provides an overview of current COVID-19 immunogenicity, safety, and efficacy data from key studies, with focus on data of importance to pediatric SOT recipients. Continued paucity of data in the setting of pediatric transplantation remains a challenge. CONCLUSIONS: Further studies of COVID-19 vaccination in pediatric SOT recipients are needed to better understand post-vaccine COVID-19 T-cell and antibody kinetics and determine the optimal vaccine schedule. Increased COVID-19 vaccine acceptability, uptake, and worldwide availability are needed to limit the risk that COVID-19 poses to pediatric solid organ transplant recipients.


Subject(s)
COVID-19 , Organ Transplantation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Child , Child, Preschool , Humans , SARS-CoV-2 , Transplant Recipients , Vaccination
13.
J Clin Microbiol ; 59(9): e0099121, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501533

ABSTRACT

Antigen-based rapid diagnostic tests (RDTs) are used in children despite the lack of data. We evaluated the diagnostic performance of the Panbio-COVID-19 Ag Rapid Test Device (P-RDT) in children. Symptomatic and asymptomatic participants 0 to 16 years old had two nasopharyngeal swabs (NPS) for both reverse transcription-PCR (RT-PCR) and P-RDT. A total of 822 participants completed the study, of which 533 (64.9%) were symptomatic. Among the 119 (14.5%) RT-PCR-positive patients, the P-RDT sensitivity was 0.66 (95% confidence interval [CI] 0.57 to 0.74). Mean viral load (VL) was higher among P-RDT-positive patients than negative ones (P < 0.001). Sensitivity was 0.91 in specimens with VL of >1.0E6 IU/ml (95% CI 0.83 to 0.99) and decreased to 0.75 (95% CI 0.66 to 0.83) for specimens >1.0E3 IU/ml. Among symptomatic participants, the P-RDT displayed a sensitivity of 0.73 (95% CI 0.64 to 0.82), which peaked at 1.00 at 2 days post-onset of symptoms (DPOS) (95% CI 1.00 to 1.00), then decreased to 0.56 (95% CI 0.23 to 0.88) at 5 DPOS. There was a trend toward lower P-RDT sensitivity in symptomatic children <12 years (0.62 [95% CI 0.45 to 0.78]) versus ≥12 years (0.80 [95% CI 0.69 to 0.91]; P = 0.09). In asymptomatic participants, the P-RDT displayed a sensitivity of 0.43 (95% CI 0.26 to 0.61). Specificity was 1.00 in symptomatic and asymptomatic children (95% CI 0.99 to 1.00). The overall 73% and 43% sensitivities of P-RDT in symptomatic and asymptomatic children, respectively, was below the 80% cutoff recommended by the World Health Organization. We observed a correlation between VL and P-RDT sensitivity, as well as variation of sensitivity according to DPOS, a major determinant of VL. These data highlight the limitations of RDTs in children, with the potential exception in early symptomatic children ≥12yrs.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Antigens, Viral , COVID-19 Serological Testing , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Sensitivity and Specificity
14.
Clin Infect Dis ; 73(6): e1384-e1386, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1479948

ABSTRACT

SARS-CoV-2 viral load (VL) can serve as a correlate for infectious virus presence and transmission. Viral shedding kinetics over the first week of illness for symptomatic children (n = 279), adolescents (n = 639), and adults (n = 7109) show VLs compatible with infectious virus presence, with slightly lower VL in children than adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Humans , Kinetics , Viral Load , Virus Shedding
15.
Clin Infect Dis ; 72(7): e192-e195, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1387785

ABSTRACT

In 208 children seeking medical care, the seropositivity rate of anti-SARS-CoV-2 IgG antibodies was 8.7%, suggesting an infection rate similar to that observed in adults but >100-fold the incidence of RT-PCR-confirmed pediatric cases. Compared with the gold-standard combined ELISA + immunofluorescence, the MEDsan IgG rapid diagnostic test performed accurately.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Child , Humans , Immunoglobulin G , Immunoglobulin M , Prevalence
16.
J Pediatric Infect Dis Soc ; 10(6): 706-713, 2021 Aug 14.
Article in English | MEDLINE | ID: covidwho-1358465

ABSTRACT

BACKGROUND: Recently, cases of multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) have been reported worldwide. Negative polymerase chain reaction (RT-PCR) testing associated with positive serology in most of the cases suggests a postinfectious syndrome. Because the pathophysiology of this syndrome is still poorly understood, extensive virological and immunological investigations are needed. METHODS: We report a series of 4 pediatric patients admitted to Geneva University Hospitals with persistent fever and laboratory evidence of inflammation meeting the published definition of MIS-C related to COVID-19, to whom an extensive virological and immunological workup was performed. RESULTS: RT-PCRs on multiple anatomical compartments were negative, whereas anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin A (IgA) and immunoglobulin G (IgG) were strongly positive by enzyme-linked immunosorbent assay and immunofluorescence. Both pseudoneutralization and full virus neutralization assays showed the presence of neutralizing antibodies in all children, confirming a recent infection with SARS-CoV-2. The analyses of cytokine profiles revealed an elevation in all cytokines, as reported in adults with severe COVID-19. Although differing in clinical presentation, some features of MIS-C show phenotypic overlap with hemophagocytic lymphohistiocytosis (HLH). In contrast to patients with primary HLH, our patients showed normal perforin expression and natural killer (NK) cell degranulation. The levels of soluble interleukin (IL)-2 receptor (sIL-2R) correlated with the severity of disease, reflecting recent T-cell activation. CONCLUSION: Our findings suggest that MIS-C related to COVID-19 is caused by a postinfectious inflammatory syndrome associated with an elevation in all cytokines, and markers of recent T-cell activation (sIL-2R) occurring despite a strong and specific humoral response to SARS-CoV-2. Further functional and genetic analyses are essential to better understand the mechanisms of host-pathogen interactions.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
17.
Clin Infect Dis ; 73(1): 148-150, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1289914

ABSTRACT

The factors that contribute to transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by children are unclear. We analyzed viral load at the time of diagnosis in 53 children and 352 adults with coronavirus disease 2019 (COVID-19) in the first 5 days post symptom onset. No significant differences in SARS-CoV-2 RNA loads were seen between children and adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , RNA, Viral , Respiratory System , Viral Load
18.
Front Pediatr ; 9: 667507, 2021.
Article in English | MEDLINE | ID: covidwho-1268270

ABSTRACT

Background: Following the spread of the coronavirus disease 2019 (COVID-19) pandemic a new disease entity emerged, defined as Pediatric Inflammatory Multisystem Syndrome temporally associated with COVID-19 (PIMS-TS), or Multisystem Inflammatory Syndrome in Children (MIS-C). In the absence of trials, evidence for treatment remains scarce. Purpose: To develop best practice recommendations for the diagnosis and treatment of children with PIMS-TS in Switzerland. It is acknowledged that the field is changing rapidly, and regular revisions in the coming months are pre-planned as evidence is increasing. Methods: Consensus guidelines for best practice were established by a multidisciplinary group of Swiss pediatric clinicians with expertise in intensive care, immunology/rheumatology, infectious diseases, hematology, and cardiology. Subsequent to literature review, four working groups established draft recommendations which were subsequently adapted in a modified Delphi process. Recommendations had to reach >80% agreement for acceptance. Results: The group achieved agreement on 26 recommendations, which specify diagnostic approaches and interventions across anti-inflammatory, anti-infectious, and support therapies, and follow-up for children with suspected PIMS-TS. A management algorithm was derived to guide treatment depending on the phenotype of presentation, categorized into PIMS-TS with (a) shock, (b) Kawasaki-disease like, and (c) undifferentiated inflammatory presentation. Conclusion: Available literature on PIMS-TS is limited to retrospective or prospective observational studies. Informed by these cohort studies and indirect evidence from other inflammatory conditions in children and adults, as well as guidelines from international health authorities, the Swiss PIMS-TS recommendations represent best practice guidelines based on currently available knowledge to standardize treatment of children with suspected PIMS-TS. Given the absence of high-grade evidence, regular updates of the recommendations will be warranted, and participation of patients in trials should be encouraged.

19.
JAMA Pediatr ; 175(5): 529-530, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1260541
20.
Pediatr Transplant ; 25(6): e14031, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255457

ABSTRACT

BACKGROUND: Population-level COVID-19 immunization will play a key role in slowing down the SARS-CoV-2 pandemic on a global scale and protect the most at-risk individuals. Thanks to a formidable universal effort, several SARS-CoV-2 vaccines have been marketed less than a year since the first documented COVID-19 case, with promising safety, efficacy, and immunogenicity results in adults. As children were not included in the initial trials, no vaccine is currently approved for individuals <16 years of age. Similarly, immunosuppressed individuals, such as solid organ transplant recipients, were excluded from initial vaccine trials, limiting the understanding of vaccine immunogenicity and safety in this at-risk population. Thus, data regarding COVID-19 vaccination in pediatric solid organ transplantation recipients are currently lacking. METHODS: Members of the International Pediatric Transplant Association review the current general status of COVID-19 vaccines focusing on pediatric-specific issues. RESULTS: This review provides an overview of COVID-19 vaccines in pediatric SOT recipients and highlights the current paucity of data in both pediatric and transplant settings in terms of safety, immunogenicity, and clinical efficacy. CONCLUSIONS: Vaccine trials including children and transplant recipients are underway and will be necessary to characterize COVID-19 vaccine safety, immunogenicity, and efficacy, which will determine potential future research directions.


Subject(s)
COVID-19 Vaccines , Organ Transplantation , COVID-19 Vaccines/immunology , Child , Forecasting , Humans
SELECTION OF CITATIONS
SEARCH DETAIL